The Telephone, Motograph, and Microphone
It is well known that to Mr. Alexander Graham Bell belongs the credit for transmitting the articulate voice over an electric circuit by talking against a diaphragm placed in front of an electromagnet. But after Mr. Bell brought out the telephone Mr. Edison made some remarkable improvements.
In the year 1875 Edison took up the study of harmonic telegraphs, in addition to his other work, with the idea of developing a system of multiple transmission by sending sound waves over an electric circuit.
One of the devices he then made is illustrated in an interesting drawing on file at the Orange Laboratory, entitled “First Telephone on Record.” This device is described by Edison in a caveat filed in the Patent Office January 14, 1876, a month before Bell filed his application for patent. Mr. Edison states, however, that while this device was crudely capable of use as a magneto telephone, he did not invent it for transmitting speech, but as an apparatus for analyzing the complex waves arising from various sounds. He did not try the effects of sound waves produced by the human voice until after Bell’s discovery was announced, but then found that this device was capable of use as a telephone.
This was a curious coincidence, but it must be understood that Mr. Edison in his testimony and public utterances has always given Mr. Bell full credit for the original discovery of transmitting articulate speech over an electric circuit.
In order to understand the value of Edison’s work in this field it should be stated that, while Bell’s telephone transmitted speech and other sounds, it was only practicable for short lines. Bell had no separate transmitter, but used a single apparatus both as transmitter and receiver. This instrument was similar to the receiver used today, having a metallic diaphragm placed near the pole of a magnet. The vibrations of the diaphragm induced very weak electric impulses in the magnetic coil. These impulses passed over the line to the receiving end, energizing the magnet coil there, and, by varying the magnetism, caused the receiving diaphragm to be similarly vibrated, and thus reproduce the sounds. Under such conditions the telephone would be practicable upon lines of only a few miles in extent, as the amount of power generated by the human voice is necessarily quite limited.
The Western Union Company requested Edison to experiment on the telephone so that it would be commercially practicable. He then went to work with a corps of helpers, and, after months of hard work day and night and the performance of many thousands of experiments, invented the carbon transmitter.
This, with his plan of using an induction coil and constant battery current on the line, were the needed elements of success, and it made the telephone a commercial possibility. Every one of the many millions of telephones in use all over the world today bears the imprint of Edison’s genius in the employment of the principles he then established.
What Edison accomplished was this: Instead of using one single apparatus for transmitting and receiving, he made a separate transmitter of special design. In this he used carbon, which varies in electrical resistance with the pressure applied. The carbon was an electrode in connection with the vibrating diaphragm, and was in a closed circuit through which flowed a battery current. The vibrations of the diaphragm caused variations of pressure on the carbon and consequent variations in the current. These in turn resulted in corresponding impulses in the receiving magnet, and the diaphragm of the receiver was vibrated accordingly, thus reproducing the sounds. Edison’s plan also included the passing of the current through an induction coil, the secondary of which was connected with the main line. By this means electrical impulses of enormously high potential are sent out on the main line to the receiving end.
Thus it will be seen that with Bell’s telephone the sound waves themselves generate the electric impulses, which are hence extremely weak. With Edison’s telephone the sound-waves actuate an electric valve, so to speak, and permit variations in a current of any desired strength.
Mr. Edison’s own story of his telephone work is full of interest:
“In 1876 I started again to experiment for the Western Union and Mr. Orton. This time it was the telephone. Bell invented the first telephone, which consisted of the present receiver, used both as a transmitter and a receiver (the magneto type). It was attempted to introduce it commercially, but it failed on account of its faintness and the extraneous sounds which came in on its wire from various causes. Mr. Orton wanted me to take hold of it and make it commercial. As I had also been working on a telegraph system employing tuning-forks, simultaneously with both Bell and Gray, I was pretty familiar with the subject. I started in, and soon produced the carbon transmitter, which is now universally used.
“Tests were made between New York and Philadelphia, also between New York and Washington, using regular Western Union wires. The noises were so great that not a word could be heard with the Bell receiver when used as a transmitter between New York and Newark, New Jersey. Mr. Orton and W. K. Vanderbilt and the board of directors witnessed and took part in the tests of my transmitter. They were successful. The Western Union then put the transmitters on private lines. Mr. Theodore Puskas, of Budapest, Hungary, was the first man to suggest a telephone exchange, and soon after exchanges were established. The telephone department was put in the hands of Hamilton McK. Twombly, Vanderbilt’s ablest son-in-law, who made a success of it. The Bell Company, of Boston, also started an exchange, and the fight was on, the Western Union pirating the Bell receiver and the Boston company pirating the Western Union transmitter. About this time I wanted to be taken care of. I threw out hints of this desire. Then Mr. Orton sent for me. He had learned that inventors didn’t do business by the regular process, and concluded he would close it right up. He asked me how much I wanted. I had made up my mind it was certainly worth twenty-five thousand dollars if it ever amounted to anything for central station work; so that was the sum I had in mind to obstinately stick to and get. Still it had been an easy job, and only required a few months, and I felt a little shaky and uncertain. So I asked him to make me an offer. He promptly said he would give me one hundred thousand dollars. ‘Alright,’ I said, ‘it is yours on one condition, and that is that you do not pay it all at once, but pay me at the rate of six thousand dollars a year, for seventeen years—the life of the patent. He seemed only too pleased to do this, and it was closed. My ambition was about four times too large for my business capacity, and I knew that I would soon spend this money experimenting if I got it all at once; so I fixed it that I couldn’t. I saved seventeen years of worry by this stroke.”
Edison continued his telephone work through a number of years and made and tested many other kinds of telephones, such as the water telephone, electrostatic telephone, condenser telephone, chemical telephone, various magneto telephones, inertia telephone, mercury telephone, voltaic pile telephone, musical transmitter, and the electromotograph.
The principle of the electromotograph was utilized by him in more ways than one; first of all in telegraphy. Soon after the time he had concluded the telephone arrangement just mentioned a patent was issued to a Mr. Page. This patent was considered very important. It related to the use of a retractile spring to withdraw the armature lever from the magnet of a telegraph or other relay or sounder, and thus controlled the art of telegraphy, except in simple circuits.
“There was no known way whereby this patent could be evaded, and its possessor would eventually control the use of what is known as the relay and sounder, and this was vital to telegraphy. Gould was pounding the Western Union on the Stock Exchange, disturbing its railroad contracts, and, being advised by his lawyers that this patent was of great value, bought it. The moment Mr. Orton heard this he sent for me and explained the situation, and wanted me to go to work immediately and see if I couldn’t evade it or discover some other means that could be used in case Gould sustained the patent. It seemed a pretty hard job, because there was no known means of moving a lever at the other end of a telegraph wire except by the use of a magnet. I said I would go at it that night. In experimenting some years previously I had discovered a very peculiar phenomenon, and that was that if a piece of metal connected to a battery was rubbed over a moistened piece of chalk resting on a metal connected to the other pole, when the current passed the friction was greatly diminished. When the current was reversed the friction was greatly increased over what it was when no current was passing. Remembering this, I substituted a piece of chalk, rotated by a small electric motor for the magnet, and connecting a sounder to a metallic finger resting on the chalk, the combination claim of Page was made worthless. A hitherto unknown means was introduced in the electric art. Two or three of the devices were made and tested by the company’s expert. Mr. Orton, after he had had me sign the patent application and got it in the Patent Office, wanted to settle for it at once. He asked my price. Again I said, ‘Make me an offer.’ Again he named one hundred thousand dollars. I accepted, providing he would pay it at the rate of six thousand dollars a year for seventeen years. This was done, and thus, with the telephone money, I received twelve thousand dollars yearly for that period from the Western Union Telegraph Company.”
A year or two later the electromotograph principle was again made use of in a curious manner. The telephone was being developed in England, and Edison had made arrangements with Colonel Gouraud, his old associate in the automatic telegraph, to represent his interests.
A company was formed, a large number of instruments were made and sent to London, and prospects were bright. Then there came a threat of litigation from the owners of the Bell patent, and Gouraud found he could not push the enterprise unless he could avoid using what was asserted to be an infringement of the Bell receiver.
He cabled for help to Edison, who sent back word telling him to hold the fort. Edison said:
“I had recourse again to the phenomenon discovered by me some years previous, that the friction of a rubbing electrode passing over a moist chalk surface was varied by electricity. I devised a telephone receiver which was afterward known as the ‘loud-speaking telephone,’ or ‘chalk receiver.’ There was no magnet, simply a diaphragm and a cylinder of compressed chalk about the size of a thimble. A thin spring connected to the center of the diaphragm extended outwardly and rested on the chalk cylinder, and was pressed against it with a pressure equal to that which would be due to a weight of about six pounds. The chalk was rotated by hand. The volume of sound was very great. A person talking into the carbon transmitter in New York had his voice so amplified that he could be heard one thousand feet away in an open field at Menlo Park. This great excess of power was due to the fact that the latter came from the person turning the handle. The voice, instead of furnishing all the power, as with the present receiver, merely controlled the power, just as an engineer working a valve would control a powerful engine.
“I made six of these receivers and sent them in charge of an expert on the first steamer. They were welcomed and tested, and shortly afterward I shipped a hundred more. At the same time I was ordered to send twenty young men, after teaching them to become expert. I set up an exchange of ten instruments around the laboratory. I would then go out and get each one out of order in every conceivable way, cutting the wires of one, short-circuiting another, destroying the adjustment of a third, putting dirt between the electrodes of a fourth, and so on. A man would be sent to each to find out the trouble. When he could find the trouble ten consecutive times, using five minutes each, he was sent to London. About sixty men were sifted to get twenty. Before all had arrived, the Bell Company there, seeing we could not be stopped, entered into negotiations for consolidation. One day I received a cable from Gouraud offering ‘thirty thousand’ for my interest. I cabled back I would accept. When the draft came I was astonished to find it was for thirty thousand pounds. I had thought it was dollars.”
After the consolidation of the Bell and Edison interests in England the chalk receiver was finally abandoned in favor of the Bell receiver—the latter being more simple and cheaper. Extensive litigation with new-comers into the telephone field followed, and Edison’s carbon transmitter patent was sustained by the English courts, while Bell’s was declared invalid.
In America, the competition between the Western Union and Bell companies, which had been keen and strenuous, was finally brought to an end under an agreement, the former company agreeing to retire from the telephonic field and the latter company agreeing to stay out of the telegraphic field. Through its ownership of Edison’s carbon transmitter invention, the Western Union company came to enjoy an annual income of several hundred thousand dollars for some years as a compensation for its retirement from telephony under this agreement.
The principle involved in Edison’s carbon-transmitter gave birth to another interesting device called the microphone, by means of which the faintest sounds could be very plainly heard. For instance, the footsteps of a common house fly make a loud noise when the hearing is assisted by the microphone.
The invention of this device was hotly disputed at the time, it being claimed for Professor Hughes, of England. Whatever credit might be due to him for the form he proposed, a standard history ascribes two original forms of the microphone to Edison, and he himself remarks: “After I sent one of my men over to London especially to show Preece the carbon transmitter, when Hughes first saw it, and heard it—then within a month he came out with the microphone, without any acknowledgment whatever. Published dates will show that Hughes came along after me.”
The carbon transmitter has not been the only way in which Edison has utilized the peculiar property that carbon possesses of altering its resistance to the passage of current according to the degree of pressure brought to bear on it.
For his quadruplex system he constructed a rheostat, or resistance box, with a series of silk disks saturated with plumbago and well dried. The pressure on the disks can be regulated by an adjustable screw, and in this way the resistance of the circuit can be varied.
He also developed a “pressure,” or carbon, relay, by means of which signals of variable strength can be transferred from one telegraphic circuit to another. The poles of the electromagnet in the local or relay circuit are hollowed out and filled up with carbon disks or powdered, plumbago.
If a weak current passes through the relay the armature will be but feebly attracted and will only compress the carbon slightly. Thus the carbon will offer considerable resistance and the signal on the local sounder will be weak.
If, on the contrary, the incoming current be strong, the armature will be strongly attracted, the carbon will be more compressed, thus lowering the resistance and giving a loud signal on the local sounder.
Another beautiful and ingenious use of carbon was made by Edison in an instrument invented by him called the taximeter. This device was used for indicating most minute degrees of heat, and was so exceedingly sensitive that in one case the heat of rays of light from the remote star Arcturus showed results.
The taximeter is a very simple instrument. A strip of hard rubber rests vertically on a platinum plate, beneath which is a carbon button, under which again lies another platinum plate. The two plates and the carbon button form part of an electric circuit containing a battery and a galvanometer. Hard rubber is very sensitive to heat, and the slightest rise of temperature causes it to expand, thus increasing the pressure on the carbon button. This produces a variation in resistance shown by the swinging of the galvanometer needle.
This instrument is so sensitive that with a delicate galvanometer the heat of a person’s hand thirty feet away will throw the needle off the scale.
——
Making a Machine Talk
If one had never heard a phonograph, it would seem as though it would be impossible to take some pieces of metal and make a machine that would repeat speaking, singing, or instrumental music just like life.
So, before the autumn of 1877 when Edison invented the phonograph, the world thought such a thing was entirely out of the question. Indeed, Edison’s own men in his workshop, who had seen him do some wonderful things, thought the idea was absurd when he told them that he was making a machine to reproduce human speech.
One of his men went so far as to bet him a box of cigars that the thing would be an utter failure when finished, but, as every one knows, Edison won the bet, for the very first time the machine was tried it repeated clearly all the words that were spoken into it.
A story has often been told in the newspapers that the invention was made through Edison’s finger being pricked by a point attached to a vibrating telephone diaphragm, but this is not true.
The invention was not made through any accident, but was the result of pure reasoning, and in this case, as in many others, fact is more wonderful than fiction. Mr. Edison’s own account of the invention of the phonograph is intensely interesting.
“I was experimenting on an automatic method of recording telegraph messages on a disk of paper laid on a revolving platen, exactly the same as the disk talking-machine of today. The platen had a spiral groove on its surface, like the disk. Over this was placed a circular disk of paper; an electromagnet with the embossing point connected to an arm traveled over the disk, and any signals given through the magnets were embossed on the disk of paper. If this disk was removed from the machine and put on a similar machine provided with a contact point the embossed record would cause the signals to be repeated into another wire. The ordinary speed of telegraphic signals is thirty-five to forty words a minute; but with this machine several hundred words were possible.
“From my experiments on the telephone I knew of the power of a diaphragm to take up sound vibrations, as I had made a little toy which when you recited loudly in the funnel would work a pawl connected to the diaphragm; and this, engaging a ratchet-wheel, served to give continuous rotation to a pulley. This pulley was connected by a cord to a little paper toy representing a man sawing wood. Hence, if one shouted: ‘Mary had a little lamb,’ etc., the paper man would start sawing wood. I reached the conclusion that if I could record the movements of the diaphragm properly I could cause such records to reproduce the original movements imparted to the diaphragm by the voice, and thus succeed in recording and reproducing the human voice.
“Instead of using a disk I designed a little machine, using a cylinder provided with grooves around the surface. Over this was to be placed tin foil, which easily received and recorded the movements of the diaphragm. A sketch was made, and the piecework price, eighteen dollars, was marked on the sketch. I was in the habit of marking the price I would pay on each sketch. If the workman lost, I would pay his regular wages; if he made more than the wages, he kept it. The workman who got the sketch was John Kruesi. I didn’t have much faith that it would work, expecting that I might possibly hear a word or so that would give hope of a future for the idea. Kruesi, when he had nearly finished it, asked what it was for. I told him I was going to record talking, and then have the machine talk back. He thought it absurd. However, it was finished; the foil was put on; I then shouted ‘Mary had a little lamb,’ etc. I adjusted the reproducer, and the machine reproduced it perfectly. I was never so taken back in my life. Everybody was astonished. I was always afraid of things that worked the first time. Long experience proved that there were great drawbacks found generally before they could be made commercial; but here was something there was no doubt of.”
No wonder that John Kruesi, as he heard the little machine repeat the words that had been spoken into it, ejaculated in an awe-stricken tone: “Mein Gott im Himmel!” No wonder the “boys” joined hands and danced around Edison, singing and shouting. No wonder that Edison and his associates sat up all night fixing and adjusting it so as to get better and better results—reciting and singing and trying one another’s voices and listening with awe and delight as the crude little machine repeated the words spoken or sung into it.
The news quickly became public, and the newspapers of the world published columns about this wonderful invention. Mr. Edison was besieged with letters from every part of the globe. Every one wanted to hear this machine; and in order to satisfy a universal demand for phonographs to be used for exhibition purposes, he had a number of them made and turned them over to various individuals, who exhibited them to great crowds around the country. These were the machines in which the record was made on a sheet of tin-foil laid around the cylinder.
They created great excitement both in America and abroad. The announcement of a phonograph concert was sufficient to fill a hall with people who were curious to hear a machine talk and sing.
In the next year, 1878, Edison entered upon his experiments in electric lighting. His work in this field kept him intensely busy for nearly ten years, and the phonograph was laid aside so far as he was concerned.
He had not forgotten it, however, for he had fully realized its tremendous possibilities very quickly after its invention. This is shown by an article he wrote for the North American Review, which appeared in the summer of 1878. In that article he predicted the possible uses of the phonograph, many of which have since been fulfilled.
In 1887, having finished the greatest part of his work on the electric light, he turned to the phonograph once more. Realizing that the tin foil machine was not an ideal type and could not come into common use, he determined to redesign it, and make it an instrument that could be handled by any one.
This meant the design and construction of an entirely different type of machine, and resulted in the kind of phonograph with which every one is familiar in these modern days. One of the chief differences was the use of a wax cylinder instead of tin foil, and, instead of indenting with a pointed stylus, the record is cut into the wax with a tiny sapphire, the next hardest jewel to a diamond.
Into his improvements of the phonograph Mr. Edison has put an enormous amount of time and work. He has never lost interest, but has worked on it more or less through all the intervening years up to the present time. Even during the present year (1911) he has expended a prodigious amount of energy in improving the reproducer and other parts, spending night after night, and frequently all night, at the laboratory.
Inasmuch as great quantities of phonographs were sold, requiring millions of records, one of the difficulties to be overcome was to make large numbers of duplicates from an original record made by a singer, speaker, or band of musicians.

MR. EDISON AT THE CLOSE OF FIVE DAYS AND NIGHTS OF CONTINUED WORK IN PERFECTING THE EARLY WAX-CYLINDER TYPE OF PHONOGRAPH—JUNE 16, 1888.
This difficulty will be perceived when it is stated that the record cut into the wax cylinder is hardly ever greater than one-thousandth of an inch deep, which is less than the thickness of a sheet of tissue paper, and in a single phonograph record there are many millions of sound-waves so recorded.
Through endless experiments of Edison and his working force, and with many ingenious inventions, however, these difficulties were overcome one by one. At the present time the machinery and processes for making, duplicate records has been so perfected that the Edison factory at Orange has made as many as one hundred and thirty thousand in a day.
It may be added that the phonograph was an invention so absolutely new that when Mr. Edison applied for his original patent, in 1877, the Patent Office could not find that any such attempt had ever before been made to record and reproduce speech or other sounds, and the patent was granted immediately. He has since taken out nearly one hundred patents on improvements.
The original patent has long since expired, and many kinds of talking-machines are now made by others also, but they all operate on the identical principle which Edison was the first to discover and put into actual practice.

Leave a comment