A place to grow your relationship with God

A New Light in the World

In these modern times, an incandescent electric lamp is such an everyday affair as to be a familiar object even to a small child. But only a few years ago—a little over thirty—the man who proposed and invented it was derided in the newspapers, and called a mad-man and a dreamer.

If among Edison’s numerous inventions there should be selected one or a class that might be considered the greatest, it seems to be universal opinion that the palm would be awarded to the incandescent lamp and his complete system for the distribution of electric light, heat, and power. These inventions as a class, and what has sprung from them, have brought about most wonderful changes in the world.

The year 1877 was a busy one at Edison’s laboratory at Menlo Park. He was engaged on the telephone, on acoustic electrical transmission, sextuplex telegraphs, duplex telegraphs, miscellaneous carbon articles, and other things. He also commenced experimenting on the electric light.

Besides, as we have seen in the previous chapter, he invented the phonograph. The great interest and excitement caused by the latter invention took up nearly all of his time and attention for many months, and, indeed, up to July, 1878. He then took a vacation and went out to Wyoming with a party of astronomers to observe an eclipse of the sun and to make a test of his taximeter. He was absent about two months, coming home rested and refreshed. Mr. Edison says:

“After my return from the trip to observe the eclipse of the sun I went with Professor Barker, professor of physics in the University of Pennsylvania, and Dr. Chandler, professor of chemistry in Columbia College, to see Mr. Wallace, a large manufacturer of brass in Ansonia, Connecticut. Wallace at this time was experimenting on series arc lighting. Just at that time I wanted to take up something new, and Professor Barker suggested that I go to work and see if I could subdivide the electric light so it could be got in small units like gas. This was not a new suggestion, because I had made a number of experiments on electric lighting a year before this. They had been laid aside for the phonograph. I determined to take up the search again and continue it. On my return home I started my usual course of collecting every kind of data about gas; bought all the transactions of the gas engineering societies, etc., all the back volumes of gas journals, etc. Having obtained all the data, and investigated gas-jet distribution in New York by actual observations, I made up my mind that the problem of the subdivision of the electric current could be solved and made commercial.”

The problem which Edison had undertaken to solve was a gigantic one. The arc light was then known and in use to a very small extent, but the subdivision of the electric light—as it was then called—had not been accomplished. It had been the dream of scientists and inventors for a long time.

Innumerable trials and experiments had been made in America and Europe for many years, but without success. Although a great number of ingenious lamps had been made by the foremost inventors of the period, they were utterly useless as part of a scheme for a system of electric lighting. In fact, these efforts had been so unsuccessful that many of the leading scientists of the time, even as late as 1879, declared that the subdivision of the light was an impossibility.

The chief trouble was that the early experimenters did not conceive the idea of a system, and worked only on a lamp. They all seemed to have the idea that an electric lamp was the main thing and that it should be of low resistance and should be operated on a current of very low voltage, or pressure. They, therefore experimented on lamps using short carbon rods or strips for burners, which required a large quantity of current.

Electric lighting with this kind of lamp was indeed a practical impossibility. The quantity of current required for a large number of them would have been prodigious, giving rise to tremendous problems on account of the heating effects. Besides, the most fatal objection was the cost of copper for conductors, which for a city section of about half a mile square would have cost not less than a hundred million dollars, on account of the enormous quantity of current that would be required.

Mr. Edison realized at the beginning that previous experimenters had failed because they had been following the wrong track. He knew that electric lighting could not be a success unless it could be sold to the public at a reasonable price and pay a profit to those who supplied it. With such lamps as had been proposed, requiring such an enormous outlay for copper, this would have been impossible. Besides, there would not have been enough copper in the world to supply conductors for one large city.

Edison did what he has so often done before and since. He turned about and went in the opposite direction. He reasoned that in order to develop a successful system of electric lighting the cost of conductors must come within very reasonable limits. To insure this, he must invent a lamp of comparatively high resistance, requiring only a small quantity of current, and with a burner having a small radiating surface.

Having the problem clearly in mind, Edison went to work in the fall of 1878 with that enthusiastic energy so characteristic of him. His earliest experiments were made with carbon as the burner for his lamp. In the previous year he had also experimented on this line, beginning with strips of carbon burned in the open air, and then in vacuum by means of a hand-worked air-pump. These strips burned only a few minutes. On resuming his work in 1878 he again commenced with carbon, and made a very large number of trials, all in vacuum. Not only did he try ordinary strips of carbonized paper, but tissue-paper coated with tar and lampblack was rolled into thin sticks, like knitting-needles, carbonized and raised to the white heat of incandescence in vacuum.

He also tried hard carbon, wood carbon, and almost every conceivable variety of paper carbon in like manner. But with the best vacuum that he could then get by means of the ordinary hand-pump the carbons would last at the most only from ten to fifteen minutes in a state of incandescence.

It was evident to Edison that such results as these were not of commercial value. He feared that, after all, carbon was not the ideal substance he had thought it was for an incandescent lamp-burner. The lamp that he had in mind was one which should have a tough, hair-like filament for a light-giving body that could be maintained at a white heat for a thousand hours before breaking.

He therefore turned his line of experiments to wires made of refractory metals, such as platinum and iridium, and their alloys. These metals have very high fusing points, and while they would last longer than the carbon strips, they melted with a slight excess of current after they had been lighted but a short time.

Nevertheless, Edison continued to experiment along this line, making some improvements, until about April, 1879, he made an important discovery which led him to the first step toward the modern incandescent lamp. He discovered that if he introduced a piece of platinum wire into an all-glass globe, completely sealed and highly exhausted of air, and passed a current through the platinum wire while the vacuum was being made the wire would give a light equal to twenty-five candle-power without melting. Previously, the same length of wire would melt in the open air when giving a light equal to four candles.

He thus discovered that the passing of current through the platinum while the vacuum was being obtained would drive out occluded gases (i.e. gases mechanically held in or upon the metal). This was important and soon led to greater results.

Edison and his associates had been working night and day at the Menlo Park laboratory, and now that promising results were ahead their efforts went on with greater vigor than ever. Taking no account of the passage of time, with an utter disregard of mealtimes, and with but scanty hours of sleep snatched reluctantly at odd periods, Edison labored on, and the laboratory was kept going without cessation.

Following up the progress he had made, Edison made improvement after improvement, especially in the line of high vacuum, and about the beginning of October had so improved his pumps that he could produce a vacuum up to the one-millionth part of an atmosphere. It should be understood that the maintaining of such a high vacuum was only rendered possible by Edison’s invention of a one-piece all-glass globe, hermetically sealed during its manufacture into a lamp.

In obtaining this perfection of vacuum apparatus Edison realized that he was drawing nearer to a solution of the problem. For many reasons, however, he was dissatisfied with platino-iridium filaments for burners, and went back to carbon, which from the first he had thought of as an ideal substance for a burner.

His next step proved that he was correct. Or October 21, 1879, after many patient trials, he carbonized a piece of cotton sewing thread bent into a loop or horseshoe form, and had it sealed into a glass globe from which he exhausted the air until a vacuum up to one-millionth of an atmosphere was produced. This lamp, when put on the circuit, lighted up brightly to incandescence and maintained its integrity for over forty hours, and lo! The practical incandescent lamp was born. The impossible, so called, had been attained; subdivision of the electric current was made practicable; the goal had been reached, and one of the greatest inventions of the century was completed.

Edison and his helpers stayed by the lamp during the whole forty hours watching it, some of the men making bets as to how long it would burn. It may well be imagined that there was great jubilation throughout the laboratory during those two days of delight and anxiety.

But now that the principle was established work was renewed with great fervor in making other lamps. A vast number of experiments were made with carbons made of paper, and the manufacture of lamps with these paper carbons was carried on continuously. A great number of these were made and put into actual use.

Edison was not satisfied, however. He wanted something better. He began to carbonize everything that he could lay hands on. In his laboratory notebooks are innumerable jottings of the things that were carbonized and tried, such as tissue-paper, soft paper, all kinds of cardboards, drawing paper of all grades, paper saturated with tar, all kinds of threads, fish-line, threads rubbed with tarred lampblack, fine threads plaited together in strands, cotton soaked in boiling tar, lamp-wick, twine, tar and lampblack mixed with a proportion of lime, vulcanized fiber, celluloid, boxwood, coconut hair and shell, spruce, hickory, baywood, cedar, and maple shavings, rosewood, punk, cork, bagging, flax, and a host of other things.

He also extended his searches far into the realms of nature in the line of grasses, plants, canes, and similar products, and in these experiments at that time and later he carbonized, made into lamps, and tested no fewer than six thousand different species of vegetable growths.

At this time Edison was investigating everything with a microscope. One day he picked up a palm-leaf fan and examined the long strip of cane binding on its edge. He gave it to one of his assistants, telling him to cut it up into filaments, carbonize them, and put them into lamps.

These proved to be the best thus far obtained, and on further examination Edison decided that he had now found the best material so far tried, and a material entirely suitable for his lamps.

Within a very short time he sent a man off to China and Japan to search for bamboo, with instructions to keep on sending samples until the right one was found. This man did his work well, and among the species of bamboo he sent was one that was found satisfactory. Mr. Edison obtained a quantity of this and arranged with a farmer in Japan to grow it for him and to ship regular supplies. This was done for a number of years, and during that time millions of Edison lamps were regularly made from that particular species of Japanese bamboo.

Mr. Edison did not stop at this, however. He was continually in search of the best, and sent other men out to Cuba, Florida, and all through South America to hunt for something that might be superior to what he was using. Another man was sent on a trip around the world for the same purpose.

Some of these explorers met with striking adventures during their travels, and all of them sent vast quantities of bamboos, palms, and fibrous grasses to the laboratory for examination, but Edison never found any of them better for his purposes than the bamboo from Japan.

In this remarkable exploration of the world for such a material will be found an example of the thoroughness of Edison’s methods. He is not satisfied to believe he has the best until he has proved it, and this search for the best bamboo was so thorough that it cost him altogether about one hundred thousand dollars.

In the mean time he was experimenting to manufacture an artificial filament that would be better than bamboo. He finally succeeded in his efforts, and brought out what is known as a “squirted” filament. This was made of a cellulose mixture and pressed out in the form of a thread through dies. This kind of filament has gradually superseded the bamboo in the manufacture of lamps.

We have been obliged to confine ourselves to a very brief outline history of the invention and development of the incandescent lamp. To tell the detailed story of the intense labors of the inventor and his staff of faithful workers would require a volume as large as the present one.

All that could be done in the space at our disposal was to try and give the reader a general idea of the clear thinking, logical reasoning, endless experimenting, hard work, and thoroughness of method of Edison in the creation of a new art.

——

Menlo Park

In the history of the world’s progress, Menlo Park, New Jersey, will ever be famous as the birthplace of the carbon transmitter, the phonograph, the incandescent lamp, the commercial dynamo, and the fundamental systems of distributing electric light, heat, and power.

In this list might also be included the electric railway, for while others had previously made some progress in this direction, it was in this historic spot that Edison did his pioneer work that advanced the art to a stage of practicability.

The name of Menlo Park will not have as striking a significance to the younger readers as to their elders whose recollections carry them back to the years between 1876 and 1886. During that period the place became invested with the glamour of romance by reason of the many startling and wonderful inventions coming out of it from time to time.

Edison worked there during these ten years. He had adopted Invention as a profession. As we have seen, he had always had a passion for a laboratory. Thus, from the little cellar at Port Huron, from the scant shelves in a baggage car, from the nooks and corners of dingy telegraph offices, and the grimy little shops in New York and Newark, he had come to the proud ownership of a real laboratory where he could wrestle with Nature for her secrets.

Here he could experiment to his heart’s content, and invent on a bolder and larger scale than ever before. All the world knows that he did.

Menlo Park was the merest hamlet, located a few miles below Elizabeth. Besides the laboratory buildings, it had only a few houses, the best-looking of which Edison lived in. Two or three of the others were occupied by the families of members of his staff; in the others boarders were taken.

During the ten years that Edison occupied his laboratory there, life in Menlo Park could be summed up in one short word—work. Through the days and through the nights, year in and year out, for the most part, he and his associates labored on unceasingly, snatching only a few hours of sleep here and there when tired nature positively demanded it. Such a scene of concentrated and fruitful activity the world has probably never seen.

The laboratory buildings consisted of the laboratory proper, the library and office, a machine shop, carpenter shop, and some smaller buildings, and, later on, a wooden building, which was used for a short time as an incandescent lamp factory.

Here Edison worked through those busy years, surrounded by a band of chosen assistants, whose individual abilities and never-failing loyalty were of invaluable aid to him in accomplishing the purposes that he had in mind.

As to these associates, we quote Mr. Edison’s own words from an autobiographical article in the Electrical World of March 5, 1904:

“It is interesting to note that in addition to those mentioned above (Charles Batchelor and Francis R. Upton), I had around me other men who ever since have remained active in the field, such as Messrs. Francis Jehl, William J. Hammer, Martin Force, Ludwig K. Boehm, not forgetting that good friend and co-worker, the late John Kruesi. They found plenty to do in the various developments of the art, and as I now look back I sometimes wonder how we did so much in so short a time.”

To this roll of honor may be added the names of a few others: The Carman brothers, Stockton L. Griffin, Dr. A. Haid, John F. Ott Estill with Mr. Edison at Orange), John W. Lawson, Edward H. Johnson, Charles L. Clarke, William Holzer, James Hippie, Charles T. Hughes, Samuel D. Mott, Charles T. Mott, E. G. Acheson, Dr. E. L. Nichols, J. H. Vail, W. S. Andrews, and Messrs. Worth, Crosby, Herrick, Hill, Isaacs, Logan, and Swanson.

To these should be added the name of Mr. Samuel Instill, who, in 1881, became Mr. Edison’s private secretary, and who for many years afterward managed all his business affairs.

Mr. Insull’s position as secretary in the Menlo Park days was not a “soft snap,” as his own words will show. He says:

“I never attempted to systematize Edison’s business life. Edison’s whole method of work would upset the system of any office. He was just as likely to be at work in his laboratory at midnight as midday. He cared not for the hours of the day or the days of the week. If he was exhausted he might more likely be asleep in the middle of the day than in the middle of the night, as most of his work in the way of invention was done at night. I used to run his office on as close business methods as my experience admitted, and I would get at him whenever it suited his convenience. Sometimes he would not go over his mail for days at a time, but other times he would go regularly to his office in the morning. At other times my engagements used to be with him to go over his business affairs at Menlo Park at night, if I was occupied in New York during the day. In fact, as a matter of convenience I used more often to get at him at night as it left my days free to transact his affairs, and enabled me, probably at a midnight luncheon, to get a few minutes of his time to look over his correspondence and get his directions as to what I should do in some particular negotiation or matter of finance. While it was a matter of suiting Edison’s convenience as to when I should transact business with him, it also suited my own ideas, as it enabled me after getting through my business with him to enjoy the privilege of watching him at his work, and to learn something about the technical side of matters. Whatever knowledge I may have of the electric light and power industry I feel I owe it to the tuition of Edison. He was about the most willing tutor, and I must confess that he had to be a patient one.”

It must not be supposed that the hard work of these times made life a burden to the small family of laborers associated with Edison. On the contrary, they were a cheerful, happy lot of men, always ready to brighten up their strenuous lives by the enjoyment of anything of a humorous nature that came along.

Often during the long, weary nights of experimenting Edison would call a halt for refreshments, which he had ordered always to be sent in at midnight when night work was in progress. Everything would be dropped, all present would join in the meal, and the last good story or joke would pass around.

Mr. Jehl has written some recollections of this period, in which he says:

“Our lunch always ended with a cigar, and I may mention here that although Edison was never fastidious in eating, he always relished a good cigar, and seemed to find in it consolation and solace. . . . It often happened that while we were enjoying the cigars after our midnight repast, one of the boys would start up a tune on the organ and we would sing together, or one of the others would give a solo. Another of the boys had a voice that sounded like something between the ring of an old tomato-can and a pewter jug. He had one song that he would sing while we roared with laughter. He was also great in imitating the tinfoil phonograph. When Boehm was in good humor he would play his zither now and then, and amuse us by singing pretty German songs. On many of these occasions the laboratory was the rendezvous of jolly and convivial visitors, mostly old friends and acquaintances of Mr. Edison. Some of the office employees would also drop in once in a while, and, as every one present was always welcome to partake of the midnight meal, we all enjoyed these gatherings. After a while, when we were ready to resume work, our visitors would intimate that they were going home to bed, but we fellows could stay up and work, and they would depart, generally singing some song like ‘Good-night, Ladies!’ . . . . It often happened that when Edison had been working up to three or four o’clock in the morning he would lie down on one of the laboratory tables, and with nothing but a couple of books for a pillow, would fall into a sound sleep. He said it did him more good than being in a soft bed, which spoils a man. Some of the laboratory assistants could be seen now and then sleeping on a table in the early morning hours. If their snoring became objectionable to those still at work, the ‘calmer’ was applied. This machine consisted of a Babbitt’s soap-box without a cover. Upon it was mounted a broad ratchet-wheel with a crank, while into the teeth of the wheel there played a stout, elastic slab of wood. The box would be placed on the table where the snorer was sleeping and the crank turned rapidly. The racket thus produced was something terrible, and the sleeper would jump up as though a typhoon had struck the laboratory. The irrepressible spirit of humor in the old days, although somewhat strenuous at times, caused many a moment of hilarity which, seemed to refresh the boys, and enabled them to work with renewed vigor after its manifestation.”

The “boys” were ever ready for a joke on one of their number. Mr. Mackenzie, who taught Edison telegraphy, spent a great deal of time at the laboratory. He had a bushy red beard, and was persuaded to give a few hairs to be carbonized and used for filaments in experimental lamps. When the lamps were lighted the boys claimed that their brightness was due to the rich color of the hairs.

The history of the busy years at Menlo Park would make a long story if told in full, but only a hint can be given here of the gradual development of many important inventions. These include the innumerable experiments on the lamp, on different kinds and weights of iron for field magnets and armatures, on magnetism, on windings and connections for field magnets and armatures, on distribution circuits, control, and regulation, and so on through a long list.

All these things were new. There was nothing in the books to serve as a guide in solving these new problems, but Edison patiently worked them out, one by one, until a complete system was the result of his labors.

Menlo Park was historic in one other particular. It was the very first place in the world to see incandescent electric lighting from a central station.

The newspapers had been so full of the wonderful invention that there was a great demand to see the new light. Edison decided to give a public exhibition, and for this purpose put up over four hundred lights in the streets and houses of Menlo Park, all connected to underground conductors which ran to the dynamos in one of the shop buildings.

On New Year’s Eve, 1879, the Pennsylvania Railroad ran special trains, and over three thousand people availed themselves of the opportunity to witness the demonstration. It was a great success, and gave rise to a wide public interest.

Edison’s laboratory at Menlo Park had never suffered for lack of visitors, but now it became a center of attraction for scientific and business men from all parts of the world. Pages of this book could be filled with the names of well-known visitors at this period, but it would be of no practical use to give them; besides we must now pass on to the time when the light was introduced to the world.

Comments on: "The Boy’s Life of Edison: Chapters 13 and 14" (1)

  1. Unknown's avatar

Leave a reply to The Boy’s Life of Edison | articlesforchristians Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.